

The formation of nitro-aromatic compounds under high NO_x-1 anthropogenic VOCs dominated atmosphere in summer in Beijing, 2

- China 3
- Yujue Wang¹, Min Hu^{*,1,5}, Yuchen Wang³, Jing Zheng¹, Dongjie Shang¹, Yudong Yang¹, Ying Liu^{1,5}, 4
- Xiao Li¹, Rongzhi Tang¹, Wenfei Zhu⁶, Zhuofei Du¹, Yusheng Wu¹, Song Guo¹, Zhijun Wu¹, Shengrong 5 Lou⁶, Mattias Hallquist², and Jian Zhen Yu^{*,3,4} 6
- 7 ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and
- 8 Engineering, Peking University, Beijing 100871, China
- 9 ²Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- 10 ³Environmental Science Programs, Hong Kong University of Science & Technology, Hong Kong, China
- ⁴Department of Chemistry, Hong Kong University of Science & Technology, Hong Kong, China 11
- ⁵Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing 100871, China 12
- 13 ⁶Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- 14 Correspondence to: Min Hu (minhu@pku.edu.cn); Jian Zhen Yu (jian.yu@ust.hk)
- 15
- 16 Abstract. Nitro-aromatic compounds (NACs), as important contributors to ultraviolet light absorption by brown carbon, 17 have been widely observed in various ambient atmospheres, however, few field studies has been focused on their formation 18 in urban atmospheres. In this work, NACs in Beijing were comprehensively quantified and characterized in summer, along 19 with major components in fine particulate matter and selected volatile organic compounds. Field observations in this high 20 NO_x-anthropogenic VOCs dominated urban atmosphere were analyzed to investigate the NAC formation and influence factors. The total concentration of quantified NACs was 6.63 ng/m3, higher than other summertime studies (0.14- 6.44 21 22 ng/m3). 4-Nitrophenol (4NP, 32.4%) and 4-nitrocatechol (4NC, 28.5%) were the most abundant ones among all the 23 quantified NAC species, followed by methyl-nitrocatechol (MNC), methyl-nitrophenol (MNP) and dimethyl-nitrophenol 24 (DMNP). The oxidation of toluene and benzene in the presence of NO_x were found to be more dominant sources of NACs 25 than biomass burning emissions. The NO2 level was an important factor influencing the secondary formation of NACs. A 26 transition from low- to high-NO_x regimes coincided with a shift from organic- to inorganic-dominated oxidation products. 27 The transition thresholds were NO₂~20 ppb for daytime and NO₂~25 ppb for nighttime conditions. Under low-NO_x 28 conditions, NACs increased with NO2, while the NO3⁻ concentrations and (NO3⁻)/NACs ratios were lower, implying 29 organic-dominated products. Above the NO_x regime transition values, NO₂ was excess for the oxidation of ambient VOCs. 30 Under this condition, NAC concentrations did not further increase obviously with NO₂, while the NO₃⁻ concentrations and 31 (NO3⁻)/NACs ratios showed significant increasing trends, when shifting from organic- to inorganic-dominated products. 32 Obvious nighttime enhancements of 3M4NC and 4M5NC, daytime enhancements of 4NP, 2M4NP and DMNP indicated 33 their different formation pathways. The aqueous-phase oxidation was the major formation pathways of 4M5NC and 3M5NC,

and photo-oxidation of toluene and benzene in the presence of NO₂ could be more important for the formation of nitrophenol and its derivatives. Thus, the (3M4NC+ 4M5NC)/4NP ratios was employed to indicate the relative contribution of aqueous-phase and gas-phase oxidation to NAC formation. The relative contribution of aqueous-phase pathways was observed to increase at elevated ambient RH and remain constant at RH> 30%. In addition, the concentrations of VOC precursors (e.g. toluene and benzene) and aerosol surface area were also important factors promoting NAC formation, and photolysis was an important loss pathway of NACs.

40

41 1 Introduction

42 Organic nitrogen, including nitro-aromatic compounds (NACs), N-heterocyclic compounds, amines and other organic 43 nitrate compounds containing (-NO₂) or (-NO₃) functional groups, represent an important fraction of ambient organic 44 aerosols (Laskin et al., 2009; Wang et al., 2017b; Chow et al., 2016; Ge et al., 2011; Ng et al., 2017). Among organic 45 nitrogen, NACs, with the -NO2 and -OH functional groups attached to an aromatic ring, have gained much attention due to 46 their impacts on light-absorption and human health (Mohr et al., 2013; Lin et al., 2017). NACs, including nitrophenols (NPs), 47 nitrocatechols (NCs) and their derivatives, are important contributors to ultraviolet light absorption by brown carbon (BrC) 48 (Mohr et al., 2013; Teich et al., 2017; Zhang et al., 2013; Xie et al., 2017), contributing 50-80% of the total visible light 49 absorption by BrC emitted from biomass burning (Lin et al., 2017). Moreover, NACs also lead to mutagenesis and 50 genotoxicity, thus posing a threat to human health (Purohit and Basu, 2000; Huang et al., 1995).

51 NACs have been widely observed in various ambient atmospheres, including urban, suburban, rural, as well as 52 background environments, with the quantified concentrations varying from 0.1 ng/m³ in rural background area to 147.4 53 ng/m3 in urban area (Iinuma et al., 2010; Teich et al., 2017; Zhang et al., 2010; Mohr et al., 2013; Chow et al., 2016; Wang et 54 al., 2018b). Combustion processes, especially biomass burning, were one of the most important primary sources of NACs 55 (Harrison et al., 2005; Wang et al., 2018b). The emission factors of NACs from biomass burning were estimated 0.8-11.1 56 mg/kg (Wang et al., 2017a; Hoffmann et al., 2007). Field observation studies indicated NACs are usually associated with 57 fresh or aged biomass burning aerosols, which contributed 10-21% of the total NACs in ambient aerosols (Chow et al., 2016; 58 Kitanovski et al., 2012; Mohr et al., 2013; Iinuma et al., 2010; Wang et al., 2018b). Apart from direct emissions from 59 biomass burning, NACs could also form through the oxidation of volatile organic compounds (VOCs, e.g. cresol, catechol) 60 emitted from biomass burning in the smoke plumes (linuma et al., 2010; Claeys et al., 2012). Methyl-nitrocatechols (MNCs) 61 could originate from NO_x oxidation of cresol or catechol, which are released during biomass burning as thermal degradation 62 products of lignin (Iinuma et al., 2010; Finewax et al., 2018; Olariu et al., 2002).

63 Various gas-phase and condensed-phase oxidation of anthropogenic VOC precursors are also important contributors to

64 NAC formation, especially in urban atmospheres (Harrison et al., 2005). The main reactions leading to the secondary

65 formation of NPs, NCs, methyl-nitrophenols (MNPs) and MNCs are shown in Figure 1 (Jenkin et al., 2003). Nitrophenols 66 and its derivatives (e.g. MNPs) could originate through gas-phase oxidation of aromatic hydrocarbons (e.g. phenol, benzene 67 and toluene) by OH or NO3 radicals in the presence of NO2, which could represent the major sources of NPs in some 68 environments (Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; Ji et al., 2017; Olariu et al., 2002). Nitrocatechols 69 dominated the composition of NACs formed in benzene/NO_x system (Xie et al., 2017). The NC formation could be initiated 70 by OH or NO₃ radicals to form β -hydroxyphenoxy/o-semiquinone radicals, which then react with NO₂ to form the final 71 products (Finewax et al., 2018). Compared with the gas-phase formation of NACs, the NAC formation via aqueous-phase 72 aromatic nitration is less well understood. Nitrophenols could form through the nitration and hydroxylation of benzene in the 73 presence of nitrite/nitrous acid or photo-nitration of phenol upon UV irradiation of nitrite in aqueous solutions (Vione et al., 74 2004; Vione et al., 2001). It has been suggested that nighttime aqueous-phase oxidation is an important formation pathway 75 for methyl-nitrocatechols, especially in polluted high-NO_x environments and acidic particles (pH around 3) (Vidovic et al., 76 2018). The proposed aqueous-phase formation processes of MNCs include electrophilic substitution route and consecutive 77 oxidation and conjugated addition route (Frka et al., 2016; Vidovic et al., 2018). The proposed loss pathways for NACs 78 include photolysis and reactions with OH, NO3 radicals or chlorine atoms (Atkinson et al., 1992; Bejan et al., 2007; Bejan et 79 al., 2015; Chen et al., 2011; Yuan et al., 2016).

80 However, few studies have been conducted based on field observation to investigate the formation of NACs in urban 81 atmospheres. To get a comprehensive understanding on the characteristics and sources of NACs in high NO_x-anthropogenic 82 VOCs dominated atmospheres, an intensive field campaign was conducted in Beijing. A group of NACs (NPs, MNPs, 83 dimethyl-nitrophenols, DMNPs, NCs and MNCs) were comprehensively quantified and characterized using high 84 performance liquid chromatography- mass spectrometry (HPLC-MS). Focusing on the secondary formation of NACs, previous lab study results were applied to the ambient atmosphere in urban Beijing and the influence factors of NAC 85 86 formation were comprehensively analyzed. This work illustrates the secondary formation of NACs in high 87 NO_x-anthropogenic VOCs dominated urban environments.

88 2 Methods

89 2.1 Sample collection

Within the bilateral Sweden-China framework research program on 'Photochemical smog in China', an intensive field
campaign was conducted in Beijing to improve the understanding on secondary chemistry during photochemical smog in
China (Hallquist et al., 2016). The campaign was conducted at Changping (40.14° N, 116.11° E), a regional site northeast of
Beijing urban area, from May 15 to June 5, 2016, when the site was obviously influenced by anthropogenic pollutants from

94 Beijing urban areas and under high-NOx conditions (Tang et al., 2018; Wang et al., 2018a). During May 17- June 5, the daily 95 average concentrations of benzene, toluene and NO_x were 66-922 ppt, 47-1344 ppt and 4.0-32.3 ppb, respectively. 96 Ambient PM2.5 (particles with aerodynamic diameter less than 2.5 µm) samples were collected on prebaked quartz fiber 97 filters (Whatman Inc.) and Teflon filters (Whatman Inc.) using a high-volume sampler (TH-1000C, Tianhong, China) and a 98 4-channel sampler (TH-16A, Tianhong, China) during the campaign. The sampling flow rates were 1.05 m³/min and 16.7 99 L/min, respectively. The daytime samples were collected from 8:30 to 17:30 LT (UTC+8) and nighttime ones from 18:00 to 100 8:00 LT (UTC+8) the next morning. Field blank samples were collected by placing filters in the samplers with the pump off 101 for 30 min.

102 2.2 Quantification of NACs

An aliquot of 25 cm² was removed from each filter sample and extracted in ultrasonic bath three times using 3, 2 and 1 103 104 mL methanol containing 30 µL saturated EDTA solution in methanol-acetic acid consecutively, each time for 30 min. The 105 extracts were then filtered through a 0.25 µm polytetrafluoroethylene (PTFE) syringe filter (Pall Life Sciences), combined, 106 and evaporated to dryness under a gentle stream of high-purity nitrogen. The dried samples were re-dissolved in 50 µL 107 methanol/water (1:1) containing 100 ppb 4-nitrophenol-2,3,5,6- d_4 as internal standard. The solution was centrifuged and the 108 supernatant was used for analysis, using Agilent 1260 LC system (Palo Alto, CA) coupled to QTRAP 4500 (AB Sciex, 109 Toronto, Ontario, Canada) mass spectrometer. The LC-MS system was equipped with an electrospray ionization (ESI) 110 source operated in negative mode. More details of the extraction and optimized MS parameters have been described in our 111 previous study (Chow et al., 2016).

112 Chromatographic separation was performed on an Acquity UPLC HSS T3 column (2.1 mm×100 mm, 1.8 μ m particle 113 size; Waters, USA) with a guard column (HSS T3, 1.8 μ m). The column temperature was kept at 45 °C and the injection 114 volume was 5.0 μ L. The mobile eluents were (A) water containing 0.1% acetic acid (v/v) and (B) methanol (v/v) containing 115 0.1% acetic acid at a flow rate of 0.19 mL/min. The gradient elution was set as follows: started with 1% B for 2.7 min; 116 increased to 54% B within 12.5 min and held for 1.0 min; then increased to 90% B within 7.5 min and held for 0.2 min; and 117 finally decreased to 1% B within 1.8 min and held for 17.3 min until the column was equilibrated.

The quantified NAC species are listed in Table 1. The NACs were identified and quantified using the [M-H]⁻ ions in the extracted ion chromatogram (EIC), using authentic standards or surrogates with the same molecular formula (Table 1). The standards included: 4-nitrocatechol (4NC), 4-nitrophenol (4NP), 2-methyl-4-nitrophenol (2M4NP), 3-methyl-4-nitrophenol (3M4NP) and 2,6-dimethyl-4-nitrophenol (2,6DM4NP) from Sigma–Aldrich (St. Louis, MO, USA); 4-methyl-5-nitrocatechol (4M5NC) from Santa Crutz Biotech (Dallas, TX, USA). The concentration of dimethyl-nitrophenol (DMNP) was the sum of three isomers.

124 2.3 Other online and offline measurements

125 Other online and offline instruments were also employed to obtain related database, which has been introduced in detail 126 in our previous paper (Wang et al., 2018c). A high resolution time-of-flight aerosol mass spectrometer (AMS) was used to 127 measure the chemical composition of PM_1 (Zheng et al., 2017). The aerosol surface area was calculated based on the 128 measurements of particle number and size distribution by a scanning mobility particle sizer (SMPS, TSI 3936) and an 129 aerosol particle sizer (APS, TSI 3321) (Yue et al., 2009; Wang et al., 2018a). VOCs were measured by a 130 proton-transfer-reaction mass spectrometer (PTR-MS). Gaseous NH₃ was measured using a NH₃ analyzer (G2103, Picarro, 131 California, USA) (Huo et al., 2015). Meteorological parameters, including relative humidity (RH), temperature, wind 132 direction and wind speed (WS) were continuously monitored by a weather station (Met one Instrument Inc.) during the 133 whole campaign.

134 Organic carbon (OC) was analyzed using thermal/optical carbon analyzer (Sunset Laboratory). The organic matter (OM) 135 concentration was calculated by multiplying OC by 1.6 (Turpin and Lim, 2001). Water soluble inorganic ions were 136 quantified by an ion chromatograph (IC, DIONEX, ICS2500/ICS2000) following procedures described in Guo et al. (2010). Aerosol acidity was then calculated using the ISORROPIA-II thermodynamic model. ISORROPIA-II was operated in 137 forward mode, assuming the particles are "metastable" (Hennigan et al., 2015; Weber et al., 2016; Guo et al., 2015). The 138 input parameters included: ambient RH, temperature, particle phase inorganic species (SO₄²⁻, NO₃⁻, Cl⁻, NH₄⁺, K⁺, Na⁺, Ca²⁺, 139 Mg²⁺), and gaseous NH₃. More details and validation of the thermodynamic calculations have been described in our previous 140 141 paper (Wang et al., 2018c).

142 3 Results and discussion

143 3.1 Concentration and composition of NACs

144 The average concentration of quantified NACs was 6.63 ng/m³, ranging from 1.27 to 17.70 ng/m³ in summer in Beijing. The concentrations of total NACs as well as individual species across this and prior studies were summarized and compared 145 146 in Figures 2, S1 and Table S1. The total NAC concentration was higher than other studies conducted in summer in mountain, 147 rural or urban environments (Teich et al., 2017; Kitanovski et al., 2012; Kahnt et al., 2013; Zhang et al., 2013; Chow et al., 148 2016; Wang et al., 2018b), and comparable to the studies in summertime Wangdu, China (Teich et al., 2017; Wang et al., 2018b) (Figure 2). Each NAC species (NP, NC, MNP and MNC), except DMNP, also showed elevated concentrations in 149 150 Changping, compared with those reported in other summertime studies (Figure S1). Influenced by the outflow from urban 151 Beijing air masses, the site was under typical high-NO_x conditions (Wang et al., 2018a), implying abundant potential 152 secondary formation of NACs during the observation period. A recent study suggested that nocturnal biogenic VOCs 153 (BVOCs) oxidation would transfer from low- to high-NOx regimes and nearly all the BVOCs would be oxidized by NO3

154 radicals, at a NO_x/BVOCs ratio higher than 1.4 (Edwards et al., 2017). When we roughly estimated the BVOCs 155 concentration to be the sum of isoprene, MVK+MACR (methyl vinyl ketone and methacrolein), and monoterpenes, the 156 NOx/BVOC ratios were higher than 8 (nighttime ratios higher than 20) (Figure S2). Even considering the major 157 anthropogenic VOCs (toluene, benzene), NO_x/VOCs ratios were higher than 5 (nighttime ratios higher than 10) (Figure S2). 158 The high-NO_x conditions were expected to facilitate the oxidation of aromatic hydrocarbons and the secondary formation of 159 NACs during the campaign. Other emissions from biomass burning and coal combustion were also observed to be 160 contributors of organic aerosols during the campaign (Tang et al., 2018), which could also be the sources of NACs. Biomass 161 burning episodes occurred during Wangdu campaign, indicating obvious NAC emissions from biomass burning (Teich et al., 162 2017; Tham et al., 2016), which explain the high NAC levels in summer in Wangdu. The NAC concentrations during 163 summer (including this study) are generally lower than those during spring, autumn or winter, when usually with higher 164 combustion emissions, especially biomass burning and coal combustion (Chow et al., 2016; Wang et al., 2018b; Kitanovski 165 et al., 2012; Kahnt et al., 2013).

166 The NAC compositions are shown in the inserted pie chart in Figure S1. 4-Nitrophenol and 4-nitrocatechol were the 167 most abundant ones among all the quantified NAC species, accounting for 32.4 % and 28.5 % of the total quantified NACs, 168 followed by methyl-nitrocatechol (4M5NC, 3M5NC and 3M6NC, 16.2%), methyl-nitrophenol (2M4NP and 3M4NP, 15.6%) 169 and dimethyl-nitrophenol (8.3%) (Table 1). Nitrophenols and nitrocatechols were generally reported among the most 170 abundant NAC species in previous studies (Table S1 and the references therein). Nitrophenols could form via the oxidation 171 of anthropogenic VOCs (e.g. benzene) in the presence of NO2 and nitrocatechols dominate the composition of NACs formed 172 in benzene/NOx system (Xie et al., 2017; Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; Ji et al., 2017; Olariu et 173 al., 2002). Thus, the high contributions of nitrophenol and nitrocatechol were not surprising in the typical high 174 NO_x-anthropogenic VOCs dominated environments in summer in Beijing.

175 The contribution of NP among the total NACs at Changping was higher than that in summer in Hong Kong, while that 176 of MNC was lower (Table S1 and the inserted pie charts in Figure S1). The gas-phase oxidation of aromatic hydrocarbons 177 (e.g. phenol, benzene) in the presence of NO₂ is a major source of NPs (Harrison et al., 2005; Yuan et al., 2016; Sato et al., 178 2007; Ji et al., 2017; Olariu et al., 2002), while aqueous-phase oxidation represents the important formation pathway for 179 atmospheric MNC (Frka et al., 2016; Vidovic et al., 2018). Different NAC compositions between Changping and Hong 180 Kong potentially hint difference in the relative contribution of aqueous-phase and gas-phase pathways to NAC formation 181 under different environment conditions. The ambient RH in Hong Kong was obviously higher than that in summer in Beijing 182 (Zhao et al., 2016), thus the relative contribution of aqueous-phase pathways could be more dominant, promoting the aqueous-phase formation of MNC in Hong Kong. The influence of ambient RH on NAC formation would be further 183 184 discussed in section 4.2. More abundant gas-phase formation of nitrophenol was expected in summer in Beijing, under 185 higher anthropogenic VOCs, high NO_x and low RH conditions. What's more, the temperature in summer in Changping was

lower than that in summer in Hong Kong (Zhao et al., 2016), which was more favorable for the partitioning of nitrophenol

- 187 products from gas phase into particle phase.
- 188 3.2 Temporal variation and sources of NACs

189 Temporal variations of the total quantified NAC concentrations in this study are shown in Figure 3, along with 190 particulate organics, nitrate, potassium ion, toluene, benzene, wind speed and RH. The correlation analysis between NACs 191 and other chemical components or meteorological conditions is shown in Table S2. During the observation period, four 192 pollution episodes (episodes I, II, III, IV) were identified based on the organic aerosols, marked by gray shading in Figure 3. Elevated NAC concentrations were observed during each pollution episode, coincided with the increasing of toluene, 193 benzene and potassium. Their good inter-correlations (Table S2) suggested the sources of NACs from biomass burning 194 195 emissions and secondary oxidation of anthropogenic VOCs (benzene, toluene and their oxidation products). It was noticed 196 that NACs showed stronger correlations with toluene (r=0.70) or benzene (r=0.64) than those with potassium (r=0.49), 197 indicating the NO_x oxidation of anthropogenic VOCs as more dominant sources of NACs than biomass burning in summer 198 in Beijing.

199 To further investigate the secondary formation of NACs, the time series and day-night variations of individual NAC 200 species are shown in Figures 4, S3 and S4. Obvious daytime enhancements of 4NP, 2M4NP and DMNP, nighttime 201 enhancements of 3M4NC and 4M5NC were observed, and other NAC species didn't show obvious day-night variations 202 (Figures 4, S3 and S4), indicating different formation pathways for NAC species. Good inter-correlations were observed 203 among nitrophenol and its derivatives (2M4NP, 3M4NP, DMNP, r=0.56-0.88), as well as among nitrocatechol and its 204 derivatives (3M6NC, 3M5NC, 4M5NC, r=0.49-0.84). However, the correlations between nitrophenol derivatives and 205 nitrocatechol derivatives (r=0.05-0.45) were lower (Table S2). The correlation analysis indicated that the formation and loss 206 pathways as well as the influence factors were similar within each group (NP and NP derivatives, NC and NC derivatives), 207 while different between them. NC and its derivatives showed stronger correlations with toluene, benzene and K^+ , compared 208 with NP and its derivatives (Table S2). This was because the factors influencing the particulate NP distribution could be 209 more complicated. Gas-phase oxidation represents an important formation pathway for NP, thus the distributions of 210 particulate NP could largely dependent on gas-particle partitioning or their gas-phase loss pathways (e.g. photolysis).

Obvious nighttime enhancements of 4M5NC and 3M5NC were observed during the whole observation period, especially during the first pollution episode (Figure 4). Strong inter-correlations between 4M5NC and 3M5NC and their similar temporal variations indicated the similar formation pathways. It has been suggested that aqueous-phase oxidation (including photooxidation and nighttime oxidation) is an important formation pathway for atmospheric MNC, especially in polluted high-NO_x environments and relatively acidic particles (pH around 3) (Vidovic et al., 2018; Frka et al., 2016). 4M5NC and 3M5NC showed relatively stronger correlations with RH compared with other NAC species (Table S2),

217 implying the importance of water in their formation processes and the aqueous-phase pathway. During the campaign, 218 particles were generally acidic with a pH range of 2.0- 3.7 and under high-NO_x conditions (Wang et al., 2018c; Wang et al., 219 2018a), which were suitable environments for the aqueous-phase oxidation formation of MNC. The daytime correlations 220 between 4M5NC or 3M5NC and RH or NO₂ were stronger than the nighttime (Table S3). The aqueous-phase NO_x oxidation 221 could be more dependent on ambient RH and NO₂ levels during the daytime, due to the lower RH and NO₂ concentrations 222 than those at night (Figures 3, S2). MNC also showed good correlations with potassium, as MNC could also form via the 223 oxidation of VOC precursors (e.g. cresol, catechol) emitted from biomass burning (Iinuma et al., 2010; Finewax et al., 2018; Olariu et al., 2002). 3M6NC showed different temporal variations from 4M5NC or 3M5NC (Figures 4, S3) and their 224 225 correlations were lower than that between 4M5NC and 3M5NC (Tables S2, S3), which suggested different formation 226 pathway of 3M6NC from those of 4M5NC or 3M5NC. The quantum calculations have predicted the formation of 3M5NC 227 via aqueous-phase electrophilic substitution and nitration by NO_2^+ , while the formation of 3M6NC was negligible due to 228 higher activation barriers for nitration of 3-methylcatechol to form 3M6NC (Frka et al., 2016). A dominant presence of 229 3M5NC in ambient aerosols was also expected according to the theoretical predictions (Frka et al., 2016). The 3M5NC 230 concentration was obviously higher than that of 3M6NC in summer in Beijing, which is consistent with the study in Frka et 231 al. (2016).

232 Different from the nighttime enhancements of 4M5NC and 3M5NC, 4NP, 2M4NP and DMNP showed obvious daytime 233 enhancements during the whole campaign (Figures 4, S4), indicating the importance of photochemical oxidation for the 234 formation of NP and its derivatives. Previous study also suggested the daytime gas-phase oxidation of aromatics could 235 represent the major source of nitrophenols, while the contribution from nighttime reaction of phenol with NO3 radicals was 236 relatively lower (Yuan et al., 2016). We did not find obvious correlation between 4NP and NO₂ when considering the whole period (Table S2), while good correlations were observed when treating the daytime and nighttime conditions separately 237 238 (Table S3). The strong correlations between 4NP and benzene, toluene or NO₂ during daytime and nighttime indicated its formation via oxidation of benzene and toluene in the presence of NO2 (Table S3). The formation mechanisms of nitrophenol 239 240 were different during daytime (OH-initiated photooxidation of aromatics in the presence of NO₂) and nighttime 241 (NO3-initiated oxidation of aromatics) (Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; Ji et al., 2017; Olariu et al., 242 2002), thus the role and influence of NO2 on NAC formation were different. For DMNP, 2M4NP and 3M4NP, they also 243 showed good correlations with benzene, toluene and NO₂ during daytime, which indicated their potential formation 244 pathways via photooxidation of aromatics in the presence of NO₂. However, DMNP and 3M4NP didn't show correlations 245 with benzene, toluene or NO2 at night. Their correlations with RH were higher at night, implying the possible formation 246 related to aqueous-phase pathways, while the potential precursors or mechanisms remain unknown.

248 4 Discussion

249 4.1 The NO₂ control of NACs formation

NO_x oxidation of anthropogenic VOC precursors represented the dominant sources of NACs in summer in Beijing. To further investigate the impacts of NO₂ on NAC secondary formation, we plot the concentrations of NACs, nitrate (NO₃⁻) and the NO₃⁻/NAC ratios as a function of NO₂ levels (Figure 5). The variation of (NO₃⁻)/NACs ratios was employed to illustrate the relative abundance of inorganic nitrate and oxidized organic nitrogen. The variation during daytime and nighttime were separately considered due to the different atmospheric conditions and oxidation mechanisms (Figure 1).

255 Generally, higher concentrations of NACs and nitrate were observed with elevated NO2 concentration levels, with 256 nonlinear responses (Figure 5). During the daytime, the NACs increased with NO₂, and the NO₃⁻ concentrations and 257 $(NO_3)/NACs$ ratios were lower at low-NO_x conditions (NO₂< 20ppb). As NO₂ increased to higher than 20 ppb, the NAC 258 concentration did not obviously increase with NO2 any more, indicating the transition from NOx-sensitive to NOx-saturated 259 regimes for NAC secondary formation. At the same time, the NO3⁻ concentrations and (NO3⁻)/NACs ratios showed 260 significant increasing trends (Figure 5a, b, c). It was likely that the daytime NO_2 was excess for the oxidation of ambient VOCs and the NAC formation at NO₂> 20 ppb. The excess NO₂ would be oxidized to form inorganic nitrate, indicating the 261 262 shift of products from organic- to inorganic-dominated conditions. Similarly, the transitions from the low- to high- NO_x regimes and oxidation products from organic- to inorganic-dominated were also observed at NO₂ ~25 ppb at night under the 263 264 ambient environments in summer in Beijing (Figure 5d, e, f). The nighttime NAC formation would become independent of 265 NO_2 concentrations and inorganic nitrate dominated the NO_x oxidation products at $NO_2 > 25$ ppb. The simplified mechanisms 266 and schematic diagram of the competing formation of inorganic nitrates and NACs are shown in Figure S5. The nighttime 267 NO₂ transition value (~25 ppb) was higher than the daytime one (~20 ppb). The higher anthropogenic VOC precursors 268 (Figure S2) and different oxidation mechanisms at night (Figure 1) were the potential reasons for elevated NO₂ transition 269 value.

270 Taking NACs as an example, the result implied that the transition from low- to high-NOx regimes and the oxidation 271 products shifting from organic- to inorganic-dominated conditions existed in the anthropogenic VOCs-NOx interacted conditions in polluted urban atmospheres. However, the mechanisms as well as transition thresholds were less understood 272 273 compared with the well-known BVOCs-NOx interaction atmospheres. The NOx transition regimes of more organic nitrogen 274 formation and the oxidation mechanisms during daytime and nighttime deserve comprehensive investigation in 275 anthropogenic VOCs-NO_x interacted urban atmospheres. Due to the complex VOC composition in ambient atmosphere and 276 the limited number of VOC species measured in this study, the NO_x regime transition value was expressed by NO_2 277 concentrations under the condition of urban Beijing atmospheres rather than NO₂/VOC or NO_x/VOC ratios. The NO_x regime 278 transition values deserve further investigation based on comprehensive lab simulation and field observations, which could be

279 expressed by NO_x/VOC ratios and applied to various atmospheric environments.

280 The formation pathways of different NAC species vary from each other based on the analysis in sections 3.2, thus the 281 role and influence of NO₂ on their formation are different. The variation of NAC compositions as a function of NO₂ levels is 282 shown in Figure 6 to investigate the influence of NO₂ on NAC compositions. The contributions of nitrocatechol and its 283 derivatives among the total NACs increased and those of nitrophenol and its derivatives decreased at elevated NO₂ 284 concentrations. The NAC composition remained relatively constant at NO₂ >20 ppb, which was approximately the transition 285 value from low- to high-NOx regimes. The role of elevated NO2 in promoting NC (and its derivatives) formation was more obvious than that for NP (and its derivatives). The oxidation of aromatics (e.g. benzene, toluene and VOCs emitted from 286 287 biomass burning) in the presence of NO₂ represent the major formation pathway of NC and its derivatives based on the analysis in section 3.2. The formation of NC and its derivatives would increase obviously as the increasing of ambient NO_2 288 289 concentration levels. The distributions of nitrophenol and its derivatives could also be obviously influenced by the 290 gas-particle partitioning and their loss pathways (e.g. photolysis), thus their increasing trend as a function of NO₂ was not as 291 obvious as those of NC and its derivatives.

292

293 4.2 Other influence factors of NACs formation

294 Nitration of aromatic hydrocarbons (e.g. benzene and toluene) represents the major source of NACs in summer in 295 Beijing. NACs generally increased with the increasing of anthropogenic toluene and benzene (Figure 7). During daytime, 296 when toluene was higher than 0.6 ppb and benzene higher than 0.4 ppb, the NACs concentrations would not increase further 297 with VOC concentrations (Figure 7a, b). It was likely that toluene or benzene was in excess and the NAC formation became 298 independent of anthropogenic VOC precursors under this condition. Similarly, the nighttime formation of NACs would be 299 independent of anthropogenic VOCs, when toluene was higher than 1 ppb and benzene higher than 0.6 ppb (Figure 7c, d). 300 The transition values of toluene or benzene was higher at night than those during the daytime. This could be due to the 301 significantly higher NO₂ levels (Figure S2), with higher capacity to oxidize VOC precursors, and different oxidation 302 mechanisms at night.

Though the total NACs didn't show good correlations with ambient RH, good correlations between 3M4NC, 4M5NC and RH were observed (Table S2, Figure 8). The NAC products (e.g. nitrophenols) dominated by gas-phase formation pathways were less affected by ambient RH. Aqueous-phase oxidation represented the major formation pathway of 3M4NC and 4M5NC during the campaign, based on the analysis in section 3.2 and previous studies (Vidovic et al., 2018; Frka et al., 2016). Elevated ambient RH would favor the water uptake of aerosols and decrease the aerosol viscosity, which favors the exchange of organic precursors or other gas molecules into the particles, mass diffusion of reactants and chemical reactions within the particles (Vaden et al., 2011; Booth et al., 2014; Renbaum-Wolff et al., 2013; Shrestha et al., 2015; Zhang et al.,

310 2015), and thereby enhance the formation of 3M4NC and 4M5NC in aqueous phase. The (3M4NC+ 4M5NC)/4NP mass 311 concentration ratios were employed to indicate the relative contribution of aqueous-phase and gas-phase pathways to NAC 312 formation. The variations of (3M4NC+ 4M5NC)/4NP ratios as a function of ambient RH during daytime and nighttime were 313 shown in Figure 9. The (3M4NC+ 4M5NC)/4NP ratios increased under higher RH conditions during the daytime, indicating 314 elevated contribution of aqueous-phase pathways to NAC formation. The relative contribution of aqueous-phase and 315 gas-phase pathways would not increase further as the increasing of RH at RH > 30%, indicated by the stable (3M4NC+ 316 4M5NC)/4NP ratios (Figure 9a). The relative contribution of aqueous-phase and gas-phase pathways remained constant 317 under higher RH conditions (RH> 30%) at night (Figure 9b). The nighttime (3M4NC+ 4M5NC)/4NP ratios were obviously 318 higher than the daytime ones, which implied that the aqueous-phase oxidation played more important roles for NAC 319 formation at night. The results implied the importance of aqueous-phase oxidation for the secondary formation of oxidized 320 organic nitrogen at elevated ambient RH. Due to the limited sample number obtained by filter-based analysis in this study, 321 the influence of RH or aerosol liquid water content on NAC formation needs further investigation using online 322 measurements in the lab.

The NAC concentrations also showed good correlations with aerosol surface area (Figure 8b). Higher aerosol surface area would provide a good interface for the partitioning of gas-phase NAC products into particle phase and also for the aqueous-phase or heterogeneous oxidation processes to form NACs (Frka et al., 2016; Vidovic et al., 2018; Bauer et al., 2004; Fenter et al., 1996). Photolysis is an important loss pathway of NACs and could be the dominant sink for nitrophenol in the gas phase (Bejan et al., 2007; Yuan et al., 2016). The highest value of J(O¹D) of each day was used to roughly represent the photolysis intensity. The daytime NAC concentrations showed negative correlations with J(O¹D) (Figure 8c, Table S3), suggesting photolysis as an important sink for NACs during the daytime.

330

331 5 Conclusions

332 Nitroaromatic compounds (NACs), as important contributors to ultraviolet light absorption by brown carbon, have been 333 widely observed in various ambient atmospheres. An intensive field campaign was conducted in summer in Beijing, to 334 investigate the characterization and formation of NACs under high NOx-anthropogenic VOCs dominated atmosphere. NACs 335 were comprehensively quantified and characterized using HPLC-MS. The total concentration of quantified NACs was 6.63 336 ng/m³, ranging from 1.27 to 17.70 ng/m³, generally higher than those reported in other studies conducted in summer. 337 4-Nitrophenol (32.4%) and 4-nitrocatechol (28.5%) were the most abundant NAC species, consistent with previous studies, 338 and followed by methyl-nitrocatechol, methyl-nitrophenol and dimethyl-nitrophenol. 339 The oxidation of anthropogenic VOC precursors (e.g. toluene, benzene and their oxidation products) in the presence of

340 NO2 represented more important sources of NACs than biomass burning in summer in Beijing. NO2 plays important roles in 341 the secondary formation of NACs. A transition from low- to high-NO_x regimes and oxidation products from organic- to 342 inorganic-dominated conditions were observed, which was NO2~20 ppb for the daytime and NO2~25 ppb for the nighttime 343 atmosphere. Under low-NOx conditions, NACs were observed to increase with NO2, and the NO3⁻ concentrations and 344 (NO_3) /NACs ratios were lower. As NO₂ increased to the high-NO_x regimes, the NAC concentration did not further increase 345 obviously with NO₂, and the NO₃⁻ concentrations and (NO₃⁻)/NACs ratios would show obvious increasing trends. Using 346 NACs as an example of organic nitrogen, the low- and high-NOx regimes were observed in the anthropogenic VOCs-NOx 347 interacted conditions in polluted urban atmospheres. While the mechanisms as well as transition threshold are still unclear, 348 which deserves comprehensive investigation in future studies.

349 Obvious nighttime enhancements of 3M4NC and 4M5NC, daytime enhancements of 4NP, 2M4NP and DMNP were 350 observed, indicating their different formation pathways. The aqueous-phase oxidation pathways are presumed to be 351 important for the formation of 4M5NC and 3M5NC, under the conditions of polluted high-NO_x and acidic particles during 352 the campaign. Photo-oxidation of toluene and benzene in the presence of NO₂ were more important for the formation of 353 nitrophenol and its derivatives. To further investigate the NAC formation pathways and influence of RH, the (3M4NC+ 354 4M5NC)/4NP mass ratios was employed to represent the relative contribution of aqueous-phase and gas-phase pathways to 355 NAC formation. The (3M4NC+ 4M5NC)/4NP mass ratios would increase at elevated RH and remain relatively consistent at 356 RH> 30%, indicating elevated contribution of aqueous-phase pathways to NAC formation under higher RH conditions. Aqueous-phase oxidation played more important roles in NAC formation at night than that during the daytime. 357

VOC precursors, aerosol surface area and photolysis were also important factors influencing the NAC formation. Nitration of aromatic hydrocarbons (e.g. benzene and toluene) represents the major secondary source of NACs, thus NACs generally increased with the increasing of toluene and benzene. The NAC formation would become independent of toluene and benzene, when the daytime concentrations were higher than 0.6 and 0.4 ppb, or the nighttime ones higher than 1 and 0.6 ppb. In addition, aerosol surface area was also important factor promoting the NAC formation and photolysis could be an important loss pathway of NACs during the daytime.

364

365

Data availability. The data presented in this article are available from the authors upon request (minhu@pku.edu.cn).

367

368 The Supplement related to this article is available online

- 370 Author contributions. MiH, MaH, and SG organized the field campaign. YJW and YCW conducted the offline analysis and
- 371 analyzed the data. YJW wrote the manuscript with input from JY. All authors contributed to the measurements, discussing
- 372 results and commenting on the manuscript.
- 373
- 374 *Competing interests.* The authors declare that they have no conflict of interest.
- 375
- Acknowledgements. This work was supported by National Natural Science Foundation of China (91544214, 41421064,
- 377 51636003); National research program for key issues in air pollution control (DQGG0103); National Key Research and
- 378 Development Program of China (2016YFC0202000: Task 3); bilateral Sweden-China framework program on
- 379 'Photochemical smog in China: formation, transformation, impact and abatement strategies' by the Swedish Research
- 380 council VR under contract (639-2013-6917).
- 381
- 382
- 383

384 References:

- Atkinson, R., Aschmann, S. M., and Arey, J.: Reactions of hydroxyl and nitrogen trioxide radicals with phenol, cresols, and
 2-nitrophenol at 296 ± 2 K, Environ. Sci. Technol., 26, 1397-1403, 10.1021/es00031a018, 1992.
- 387 Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., and Dentener, F.: Global modeling of heterogeneous chemistry
- on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations, J. Geophys. Res.,
- 389 [Atmos.], 109, 10.1029/2003jd003868, 2004.
- Bejan, I., Barnes, I., Olariu, R., Zhou, S., Wiesen, P., and Benter, T.: Investigations on the gas-phase photolysis and OH
 radical kinetics of methyl-2-nitrophenols, Phys. Chem. Chem. Phys., 9, 5686-5692, 10.1039/b709464g, 2007.
- Bejan, I., Duncianu, M., Olariu, R., Barnes, I., Seakins, P. W., and Wiesen, P.: Kinetic study of the gas-phase reactions of
- chlorine atoms with 2-chlorophenol, 2-nitrophenol, and four methyl-2-nitrophenol isomers, J. Phys. Chem. A, 119,
 4735-4745, 10.1021/acs.jpca.5b02392, 2015.
- Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.: Connecting bulk viscosity measurements to
- kinetic limitations on attaining equilibrium for a model aerosol composition, Environ. Sci. Technol., 48, 9298-9305,
 10.1021/es501705c, 2014.
- Chen, J., Wenger, J. C., and Venables, D. S.: Near-ultraviolet absorption cross sections of nitrophenols and their potential
 influence on tropospheric oxidation capacity, J. Phys. Chem. A, 115, 12235-12242, 10.1021/jp206929r, 2011.
- 400 Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic compounds in atmospheric fine particulate
- matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning
 emissions, Environ. Chem., 13, 665-673, 10.1071/en15174, 2016.
- 403 Claeys, M., Vermeylen, R., Yasmeen, F., Gomez-Gonzalez, Y., Chi, X. G., Maenhaut, W., Meszaros, T., and Salma, I.:
- 404 Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using
- liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry, Environ.
 Chem., 9, 273-284, 10.1071/EN11163, 2012.
- 407 Edwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., Graus, M. G., Hanisco, T. F., Holloway,
- 408 J., Huber, G., Kaiser, J., Keutsch, F. N., Lerner, B. M., Neuman, J. A., Parrish, D. D., Peischl, J., Pollack, I. B., Ravishankara,
- 409 A. R., Roberts, J. M., Ryerson, T. B., Trainer, M., Veres, P. R., Wolfe, G. M., Warneke, C., and Brown, S. S.: Transition from

high- to low-NO_x control of night-time oxidation in the southeastern US, Nature Geosci., 10, 490-495, 10.1038/NGEO2976,
2017.

- Fenter, F. F., Caloz, F., and Rossi, M. J.: Heterogeneous kinetics of N₂O₅ uptake on salt, with a systematic study of the role of
 surface presentation (for N₂O₅ and HNO₃), J. Phys. Chem., 100, 1008-1019, 10.1021/jp9503829, 1996.
- 414 Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and quantification of 4-nitrocatechol formed from OH and
- 415 NO₃ radical-initiated reactions of catechol in air in the presence of NO₃: implications for secondary organic aerosol
- 416 formation from biomass burning, Environ. Sci. Technol., 52, 1981-1989, 10.1021/acs.est.7b05864, 2018.
- 417 Frka, S., Sala, M., Kroflic, A., Hus, M., Cusak, A., and Grgic, I.: Quantum chemical calculations resolved identification of
- 418 methylnitrocatechols in atmospheric aerosols, Environ. Sci. Technol., 50, 5526-5535, 10.1021/acs.est.6b00823, 2016.
- 419 Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines part I. A review, Atmos. Environ., 45, 524-546,
 420 10.1016/j.atmosenv.2010.10.012, 2011.
- 421 Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S. H., Bergin, M. H., Ng, N. L.,
- 422 Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15,
- 423 5211-5228, 10.5194/acp-15-5211-2015, 2015.
- 424 Guo, S., Hu, M., Wang, Z. B., Slanina, J., and Zhao, Y. L.: Size-resolved aerosol water-soluble ionic compositions in the
- 425 summer of Beijing: implication of regional secondary formation, Atmos. Chem. Phys., 10, 947-959,
 426 10.5194/acp-10-947-2010, 2010.
- Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C. K., Gao, J., Boman, J., Guo, S., Hallquist, A. M., Mellqvist, J.,
 Moldanova, J., Pathak, R. K., Pettersson, J. B. C., Pleijel, H., Simpson, D., and Thynell, M.: Photochemical smog in China:
- 429 scientific challenges and implications for air-quality policies, Natl. Sci. Rev., 3, 401-403, 10.1093/nsr/nww080, 2016.
- 430 Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Iulian Olariu, R.: Nitrated phenols in the atmosphere: a
- 431 review, Atmos. Environ., 39, 231-248, 10.1016/j.atmosenv.2004.09.044, 2005.
- 432 Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to
- estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775-2790, 10.5194/acp-15-2775-2015, 2015.
- 434 Hoffmann, D., Iinuma, Y., and Herrmann, H.: Development of a method for fast analysis of phenolic molecular markers in
- biomass burning particles using high performance liquid chromatography/atmospheric pressure chemical ionisation mass
- 436 spectrometry, J. Chromatogr., A, 1143, 168-175, 10.1016/j.chroma.2007.01.035, 2007.
- Huang, Q., Wang, L., and Han, S.: The genotoxicity of substituted nitrobenzenes and the quantitative structure-activity
 relationship studies, Chemosphere, 30, 915-923, 10.1016/0045-6535(94)00450-9, 1995.
- 439 Huo, Q., Cai, X., Kang, L., Zhang, H., Song, Y., and Zhu, T.: Estimating ammonia emissions from a winter wheat cropland
- in North China Plain with field experiments and inverse dispersion modeling, Atmos. Environ., 104, 1-10,
 10.1016/j.atmosenv.2015.01.003, 2015.
- 442 Iinuma, Y., Boge, O., Grafe, R., and Herrmann, H.: Methyl-nitrocatechols: atmospheric tracer compounds for biomass
 443 burning secondary organic aerosols, Environ. Sci. Technol., 44, 8453-8459, 10.1021/es102938a, 2010.
- 444 Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical
- Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3,
 181-193, doi 10.5194/acp-3-181-2003, 2003.
- 447 Ji, Y., Zhao, J., Terazono, H., Misawa, K., Levitt, N. P., Li, Y., Lin, Y., Peng, J., Wang, Y., Duan, L., Pan, B., Zhang, F., Feng,
- 448 X., An, T., Marrero-Ortiz, W., Secrest, J., Zhang, A. L., Shibuya, K., Molina, M. J., and Zhang, R.: Reassessing the
- 449 atmospheric oxidation mechanism of toluene, Proc. Natl. Acad. Sci. USA, 114, 8169-8174, 10.1073/pnas.1705463114, 2017.
- 450 Kahnt, A., Behrouzi, S., Vermeylen, R., Safi Shalamzari, M., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.:
- 451 One-year study of nitro-organic compounds and their relation to wood burning in PM₁₀ aerosol from a rural site in Belgium,
- 452 Atmos. Environ., 81, 561-568, 10.1016/j.atmosenv.2013.09.041, 2013.
- 453 Kitanovski, Z., Grgic, I., Vermeylen, R., Claeys, M., and Maenhaut, W.: Liquid chromatography tandem mass spectrometry
- 454 method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter, J. Chromatogr., A, 1268,
- 455 35-43, 10.1016/j.chroma.2012.10.021, 2012.
- 456 Laskin, A., Smith, J. S., and Laskin, J.: Molecular characterization of nitrogen-containing organic compounds in biomass

- burning aerosols using high-resolution mass spectrometry, Environ. Sci. Technol., 43, 3764-3771, 10.1021/es803456n, 2009.
- 458 Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular chemistry of atmospheric brown
- carbon inferred from a nationwide biomass burning event, Environ. Sci. Technol., 51, 11561-11570, 10.1021/acs.est.7b02276,
 2017.
- 461 Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prevot, A. S., Xu, L., Ng, N. L., Herndon, S. C., Williams, L. R., Franklin, J. P.,
- 462 Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K. J., Dubey, M. K., Allan, J. D., and Thornton,
- J. A.: Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during
 winter time, Environ. Sci. Technol., 47, 6316-6324, 10.1021/es400683v, 2013.
- 465 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L.,
- 466 Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B.
- 467 H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O.
- 468 T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.:
- 469 Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys.,
- 470 17, 2103-2162, 10.5194/acp-17-2103-2017, 2017.
- 471 Olariu, R. I., Klotz, B., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR study of the ring-retaining products from the
- 472 reaction of OH radicals with phenol, o-, m- and p-cresol, Atmos. Environ., 36, 3685-3697, 10.1016/S1352-2310(02)00202-9,
 473 2002.
- 474 Purohit, V. and Basu, A. K.: Mutagenicity of nitroaromatic compounds, Chem. Res. Toxicol., 13, 673-692,
 475 10.1021/tx00002x, 2000.
- 476 Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E., Martin, S. T., and
- 477 Bertram, A. K.: Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity, Proc.
- 478 Natl. Acad. Sci. USA, 110, 8014-8019, 10.1073/pnas.1219548110, 2013.
- 479 Sato, K., Hatakeyama, S., and Imamura, T.: Secondary organic aerosol formation during the photooxidation of toluene: NO_x
- 480 dependence of chemical composition, J. Phys. Chem. A, 111, 9796-9808, 10.1021/jp071419f, 2007.
- 481 Shrestha, M., Zhang, Y., Upshur, M. A., Liu, P., Blair, S. L., Wang, H. F., Nizkorodov, S. A., Thomson, R. J., Martin, S. T.,
- and Geiger, F. M.: On surface order and disorder of alpha-pinene-derived secondary organic material, J. Phys. Chem. A, 119,
 4609-4617, 10.1021/jp510780e, 2015.
- 484 Tang, R., Wu, Z., Li, X., Wang, Y., Shang, D., Xiao, Y., Li, M., Zeng, L., Wu, Z., Hallquist, M., Hu, M., and Guo, S.: Primary
- and secondary organic aerosols in summer 2016 in Beijing, Atmos. Chem. Phys., 18, 4055-4068, 10.5194/acp-18-4055-2018,
 2018.
- 487 Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Močnik, G., and Herrmann, H.: Contributions of
- 488 nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric
- 489 environments in Germany and China, Atmos. Chem. Phys., 17, 1653-1672, 10.5194/acp-17-1653-2017, 2017.
- 490 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J.,
- 491 Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning:
- 492 investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16,
- 493 14959-14977, 10.5194/acp-16-14959-2016, 2016.
- Turpin, B. J. and Lim, H. J.: Species contributions to PM_{2.5} mass concentrations: revisiting common assumptions for
 estimating organic mass, Aerosol Sci. Tech., 35, 602-610, doi 10.1080/02786820152051454, 2001.
- Vaden, T. D., Imre, D., Beranek, J., Shrivastava, M., and Zelenyuk, A.: Evaporation kinetics and phase of laboratory and
 ambient secondary organic aerosol, Proc. Natl. Acad. Sci. USA, 108, 2190-2195, 10.1073/pnas.1013391108, 2011.
- Vidovic, K., Lasic Jurkovic, D., Sala, M., Kroflic, A., and Grgic, I.: Nighttime aqueous-phase formation of nitrocatechols in
 the atmospheric condensed phase, Environ. Sci. Technol., 52, 9722-9730, 10.1021/acs.est.8b01161, 2018.
- Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: Phenol photonitration upon UV irradiation of nitrite in aqueous
 solution I: effects of oxygen and 2-propanol, Chemosphere, 45, 893-902, 10.1016/s0045-6535(01)00035-2, 2001.
- 502 Vione, D., Maurino, V., Minero, C., Lucchiari, M., and Pelizzetti, E.: Nitration and hydroxylation of benzene in the presence
- 503 of nitrite/nitrous acid in aqueous solution, Chemosphere, 56, 1049-1059, 10.1016/j.chemosphere.2004.05.027, 2004.

- Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le Breton, M., Lou, S. R., Tang, M. J., Wu,
 Y. S., Zhu, W. F., Zheng, J., Zeng, L. M., Hallquist, M., Hu, M., and Zhang, Y. H.: Efficient N₂O₅ uptake and NO₃ oxidation
- 506 in the outflow of urban Beijing, Atmos. Chem. Phys., 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018a.
- 507 Wang, L., Wang, X., Gu, R., Wang, H., Yao, L., Wen, L., Zhu, F., Wang, W., Xue, L., Yang, L., Lu, K., Chen, J., Wang, T.,
- 508 Zhang, Y., and Wang, W.: Observations of fine particulate nitrated phenols in four sites in northern China: concentrations,
- 509 source apportionment, and secondary formation, Atmos. Chem. Phys., 18, 4349-4359, 10.5194/acp-18-4349-2018, 2018b.
- 510 Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L., Chen, J., and Wang, W.: Emissions of fine
- 511 particulate nitrated phenols from the burning of five common types of biomass, Environ. Pollut., 230, 405-412,
- 512 10.1016/j.envpol.2017.06.072, 2017a.
- 513 Wang, Y., Hu, M., Lin, P., Guo, Q., Wu, Z., Li, M., Zeng, L., Song, Y., Zeng, L., Wu, Y., Guo, S., Huang, X., and He, L.:
- 514 Molecular characterization of nitrogen-containing organic compounds in humic-like substances emitted from straw residue
- 515 burning, Environ. Sci. Technol., 51, 5951-5961, 10.1021/acs.est.7b00248, 2017b.
- 516 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., Du, Z., Shang, D.,
- 517 Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., and Yu, J.: The secondary formation of organosulfates under interactions
- between biogenic emissions and anthropogenic pollutants in summer in Beijing, Atmos. Chem. Phys., 18, 10693-10713,
 10.5194/acp-18-10693-2018, 2018c.
- Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate
 concentrations over the past 15 years, Nature Geosci., 9, 282-285, 10.1038/ngeo2665, 2016.
- 522 Xie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst, T. E., and Holder, A. L.: Light absorption of
- secondary organic aerosol: composition and contribution of nitroaromatic compounds, Environ. Sci. Technol., 51,
 11607-11616, 10.1021/acs.est.7b03263, 2017.
- 525 Yuan, B., Liggio, J., Wentzell, J., Li, S.-M., Stark, H., Roberts, J. M., Gilman, J., Lerner, B., Warneke, C., Li, R., Leithead, A.,
- 526 Osthoff, H. D., Wild, R., Brown, S. S., and de Gouw, J. A.: Secondary formation of nitrated phenols: insights from
- 527 observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014, Atmos. Chem. Phys., 16, 2139-2153,
 528 10.5194/acp-16-2139-2016, 2016.
- 529 Yue, D., Hu, M., Wu, Z., Wang, Z., Guo, S., Wehner, B., Nowak, A., Achtert, P., Wiedensohler, A., Jung, J., Kim, Y. J., and
- Liu, S.: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing, J. Geophys. Res.,
 114, D00G12, 10.1029/2008jd010894, 2009.
- 532 Zhang, X., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources, composition and absorption Angstrom exponent of
- light-absorbing organic components in aerosol extracts from the Los Angeles Basin, Environ. Sci. Technol., 47, 3685-3693,
 10.1021/es305047b, 2013.
- 535 Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata, M., Renbaum-Wolff, L., Sato, B. B., Liu,
- P. F., Bertram, A. K., Geiger, F. M., and Martin, S. T.: Changing shapes and implied viscosities of suspended submicron
- 537 particles, Atmos. Chem. Phys., 15, 7819-7829, 10.5194/acp-15-7819-2015, 2015.
- 538 Zhang, Y. Y., Müller, L., Winterhalter, R., Moortgat, G. K., Hoffmann, T., and Pöschl, U.: Seasonal cycle and temperature
- dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter, Atmos.
 Chem. Phys., 10, 7859-7873, 10.5194/acp-10-7859-2010, 2010.
- 541 Zhao, W., Fan, S., Guo, H., Gao, B., Sun, J., and Chen, L.: Assessing the impact of local meteorological variables on surface
- 542 ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models, Atmos. Environ., 144, 182-193,
- 543 10.1016/j.atmosenv.2016.08.077, 2016.
- 544 Zheng, J., Hu, M., Du, Z. F., Shang, D. J., Gong, Z. H., Qin, Y. H., Fang, J. Y., Gu, F. T., Li, M. R., Peng, J. F., Li, J., Zhang,
- Y. Q., Huang, X. F., He, L. Y., Wu, Y. S., and Guo, S.: Influence of biomass burning from South Asia at a high-altitude
 mountain receptor site in China, Atmos. Chem. Phys., 17, 6853-6864, 10.5194/acp-17-6853-2017, 2017.
- 547

548

550

551 Figures

552

553

554 Figure 1 Formation of nitrophenols, nitrocatechols, methyl-nitrophenols and methyl-nitrocatechols from the oxidation of (a)

benzene and (b) toluene in the atmosphere (MCM v3.3). Reactions in red represent the daytime pathways and those in blue

represent the nighttime pathways. Other isomers for intermediate and final products are also expected, but not shown in the

557 figure for clarity.

559

560 Figure 2 Summary of NAC concentrations cross this and prior studies (see Table S1 for the data and references therein). The

562

563

564 Figure 3 Time series of (a) wind speed (WS) and relative humidity (RH), (b) benzene and toluene, mass concentrations of (c)

565 K^+ , (d) organics and nitrate, and (e) NACs. The pollution episodes are marked by gray shading.

568 Figure 4 Time series of (a) NO_x, (b) J(O¹D), (c) 4-methyl-5-nitrocatechol (4M5NC), (d) 4-methyl-5-nitrocatechol (3M5NC),

569 (e) 4-nitrophenol (4NP), (f) 2-methyl-4-nitrophenol (2M4NP), and (g) dimethyl-nitrophenol (DMNP). The gray background

- 570 denotes the nighttime and white background denotes the daytime.
- 571

567

573 Figure 5 Concentrations of NACs, nitrate and NO₃-NAC ratios as a function of NO₂ concentration bins during daytime and

nighttime. The markers represent the mean values and whiskers represent 25 and 75 percentiles.

575

Figure 6 Variation of NAC compositions as a function of NO₂ concentration bins.

580 Figure 7 Concentrations of NACs as a function of toluene and benzene concentration bins during daytime and nighttime. The

581 markers represent the mean values and whiskers represent 25 and 75 percentiles. The r value in each panel represents the

582 correlation coefficient between NACs and toluene or benzene.

583

586

Figure 8 Correlation analysis (a) between (3M5NC+4M5NC) and RH, (b) between NACs and aerosol surface area, (c)

between NACs and J(O¹D).

595 Tables

596	Table 1 Quantified nitro-aromatic compounds in this study							
	compounds	formula	[M-H] ⁻	retention time (min)	standard	structure	range	average (n=38)
	4NP	C ₆ H ₄ NO ₃	138.02	21.3	4NP	O2N OH	0.60-4.24	2.15 ± 0.93
	3M4NP	C ₇ H ₆ NO ₃ ⁻	152.03	23.9	3M4NP	OH CH ₃ NO ₂	0.08-0.64	$0.27\!\pm\!0.12$
	2M4NP	C ₇ H ₆ NO ₃	152.03	24.9	2M4NP	O2N CH3	0.11-2.99	0.76 ± 0.55
	DMNP	C ₈ H ₈ NO ₃ -	166.05	26.0, 26.3, 26.9	2,6DM4NP	H ₃ C H ₃ C	0.04-1.97	$0.55 \!\pm\! 0.45$
	Total NP							3.72
	4NC	C ₆ H ₄ NO ₄ ⁻	154.01	18.9	4NC	OH NO ₂ OH	0.16-6.89	1.89 ± 1.28
	4M5NC	$C_7H_6NO_4^-$	168.03	21.8	4M5NC	H ₃ C O ₂ N OH	0.02-1.52	$0.56\!\pm\!0.40$
	3M6NC	C ₇ H ₆ NO ₄	168.03	23.2	4M5NC	CH3 OH NO2	0.02-0.19	$0.07\!\pm\!0.03$
	3M5NC	C ₇ H ₆ NO ₄	168.03	23.5	4M5NC	O ₂ N OH	0.04-1.02	0.44 ± 0.27
	Total NC							2.96